[Changes in voltage-gated potassium currents in the trigeminal neurons after a chronic constriction of infraorbital nerve.].
نویسندگان
چکیده
The purpose of this study was to establish a model of trigeminal neuralgia (TN) through an approach from lower edge of cheekbone and to observe the functional changes in the voltage-gated potassium currents in the cultured trigeminal ganglion (TG) neurons. Thirty Sprague-Dawley male rats were divided into two groups, the sham-operated (sham) group and the operated group. The TN model was carried out by using a chronic constriction injury of the infraorbital nerve (ION-CCI) from lower edge of cheekbone. Peripheral pain threshold test and whole-cell patch clamp recording were used to determine the difference between sham and ION-CCI rats. The withdrawal threshold of whisker pad in operated side of ION-CCI rat was decreased significantly from 6 d after operation and then maintained until 21 d, with the lowest on the 15th day. The threshold of whisker pad in non-operated side of operated rats was also decreased significantly compared with that in the sham group. Delayed rectifier potassium current (I(K)) in cultured ION-CCI TG neurons was decreased significantly compared with that in the sham group. Transient outward potassium currents (I(A)) in both operated and non-operated sides of TG neurons from ION-CCI rats were also reduced significantly compared with that in the sham group. The present study provided a new method of ION-CCI. In this model, the decrease of I(A) and I(K) might contribute, at least in part, to the decrease in mechanical pain threshold of whisker pad and the subsequent hyperalgia.
منابع مشابه
KCNQ channels in nociceptive cold-sensing trigeminal ganglion neurons as therapeutic targets for treating orofacial cold hyperalgesia
BACKGROUND Hyperexcitability of nociceptive afferent fibers is an underlying mechanism of neuropathic pain and ion channels involved in neuronal excitability are potentially therapeutic targets. KCNQ channels, a subfamily of voltage-gated K(+) channels mediating M-currents, play a key role in neuronal excitability. It is unknown whether KCNQ channels are involved in the excitability of nocicept...
متن کاملThe role of Nav1.9 channel in the development of neuropathic orofacial pain associated with trigeminal neuralgia
BACKGROUND Trigeminal neuralgia is accompanied by severe mechanical, thermal and chemical hypersensitivity of the orofacial area innervated by neurons of trigeminal ganglion (TG). We examined the role of the voltage-gated sodium channel subtype Nav1.9 in the development of trigeminal neuralgia. RESULTS We found that Nav1.9 is required for the development of both thermal and mechanical hyperse...
متن کاملMicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain
miR-17-92 is a microRNA cluster with six distinct members. Here, we show that the miR-17-92 cluster and its individual members modulate chronic neuropathic pain. All cluster members are persistently upregulated in primary sensory neurons after nerve injury. Overexpression of miR-18a, miR-19a, miR-19b and miR-92a cluster members elicits mechanical allodynia in rats, while their blockade alleviat...
متن کاملSilencing the Kir4.1 potassium channel subunit in satellite glial cells of the rat trigeminal ganglion results in pain-like behavior in the absence of nerve injury.
Growing evidence suggests that changes in the ion buffering capacity of glial cells can give rise to neuropathic pain. In the CNS, potassium ion (K+) buffering is dependent on the glia-specific inward rectifying K+ channel Kir4.1. We recently reported that the satellite glial cells that surround primary sensory neurons located in sensory ganglia of the peripheral nervous system also express Kir...
متن کاملPotassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain
Previous studies in several different trigeminal nerve injury/inflammation models indicated that the hyperexcitability of primary afferent neurons contributes to the pain pathway underlying mechanical allodynia. Although multiple types of voltage-gated ion channels are associated with neuronal hyperexcitability, voltage-gated K+ channels (Kv) are one of the important physiological regulators of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Sheng li xue bao : [Acta physiologica Sinica]
دوره 61 1 شماره
صفحات -
تاریخ انتشار 2009